On algebraic values of function $$\exp ~(2\pi i ~x+\log \log y)$$ exp ( 2 π i x + log log y )

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twofold exp and log

This article is about twofold arithmetic [1, 2]. Here I introduce algorithms and experimental code for twofold variant of C/C++ standard functions exp() and log(), and expm1() and log1p(). Twofold function y0 + y1 ≈ f(x0 + x1) is nearly 2x-precise so can assess accuracy of standard one. Performance allows assessing on-fly: twofold texp() over double is ~10x times faster than expq() by GNU quadm...

متن کامل

Asymptotic Expansions of exp - log

We give an algorithm to compute asymptotic expansions of exp-log functions. This algorithm automatically computes the necessary asymptotic scale and does not suuer from problems of indeenite cancellation. In particular, an asymptotic equivalent can always be computed for a given exp-log function. D eveloppements asymptotiques de fonctions exp-log R esum e Nous pr esentons un algorithme pour le ...

متن کامل

Growth Estimates for Exp-Log Functions

Exp-log functions are those obtained from the constant 1 and the variable X by means of arithmetic operations and the function symbols exp() and logll. This paper gives an explicit algorithm for determining eventual dominance of these functions modulo an oracle for deciding zero equivalence of constant terms. This also provides another proof that the dominance problem for exp-log functions is T...

متن کامل

Modified LOG-EXP Based Image Compression Algorithm

It is known that LOG – EXP transform based image compression algorithm proposed by S.C.Huang, L.G.Chen and H.C.Chang offers high Compression Ratio (CR) and high image quality compared to JPEG for any specified value of Peak-Signal to Noise Ratio (PSNR). In this paper, a modified LOG – EXP transform based image compression algorithm obtained by using arithmetic coding in the place of Huffman cod...

متن کامل

On the Convexity of log det (I + K X^{-1})

A simple proof is given for the convexity of log det(I +KX) in the positive definite matrix variable X ≻ 0 with a given positive semidefinite K 0. Convexity of functions of covariance matrices often plays an important role in the analysis of Gaussian channels. For example, suppose Y and Z are independent complex Gaussian nvectors with Y ∼ N(0,K) and Z ∼ N(0,X). Then, I(Y;Y + Z) = log det(I +KX)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Ramanujan Journal

سال: 2017

ISSN: 1382-4090,1572-9303

DOI: 10.1007/s11139-017-9969-3